4""-Acetylsagittatin A, a Kaempferol Triglycoside from Kalanchoe streptantha

S. S. Costa,[†] A. Jossang, and B. Bodo*

Laboratoire de Chimie, URA CNRS 401, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75005 Paris, France

Received August 30, 1995[®]

The methanolic extract from the leaves of Kalanchoe streptantha (Crassulaceae) afforded a new kaempferol $3-O-\beta$ -xylopyranosyl- $(1\rightarrow 2)-\alpha$ -rhamnopyranoside $7-O-(4'''-O-acetyl-\alpha$ -rhamnopyranoside), named 4''''-acetylsagittatin A (1), and the known sagittatin A (2). The structures were determined by ¹H-¹H and ¹H-¹³C COSY NMR and FAB mass spectroscopy and confirmed by analysis of the peracetylated derivative.

Kalanchoe streptantha Baker (Crassulaceae) is one of the 59 Kalanchoe species reported in Madagascar.¹ Major constituents previously isolated from the genus were cytotoxic bufadienolides,^{2,3} flavonoid glycosides,⁴⁻⁶ and terpenoids.⁷ We recently described the isolation from K. brasiliensis of five patuletin acetylrhamnosides, three of them showing strong inhibition of induced lymphocyte proliferation.⁸

In continuation of our research on immunomodulating substances from Kalanchoe species (syn. Bryophyllum), often used in traditional medicine for treatment of infections, tissue injuries, abscesses, and enlarged ganglia,^{9,10} two flavonoids were isolated from K. streptantha: a new acetylated flavonoid triglycoside, named 4""-acetylsagittatin A (1), and the known sagittatin A (2)¹¹ which are described here.

Results and Discussion

The methanolic extract of the leaves of K. streptantha was chromatographed on a reversed-phase gel column (RP-2). Flavonoid-containing fractions were further purified on a Sephadex LH-20 column to afford compound 1 as the major component of the extract along with a smaller amount of 2.

Compound 1 was isolated as an amorphous yellow powder and suggested to be a flavonol derivative from its UV spectrum. The molecular formula $C_{34}H_{40}O_{19}$ was deduced from the pseudomolecular ion at m/z753.2244on the HR FAB mass spectrum.

The ¹H NMR spectrum showed the presence of a kaempferol aglycon characterized by two doublet signals at δ 6.87 and 7.69 assigned to H-3', -5' and H-2', -6', respectively, and two doublet signals at δ 6.30 (H-6) and 6.56 (H-8) (Table 1). The presence of two rhamnopyranosyl units was suggested by two characteristic methyl doublet signals at δ 0.90 (J = 6.5 Hz) and 1.09 (J =

6.5 Hz) and two broad singlets corresponding to the anomeric protons at δ 5.38 and 5.53. An acetyl group was depicted from a sharp singlet signal at δ 2.11 (3) H). Each carbohydrate spin system was assigned by $^{1}H^{-1}H$ and $^{1}H^{-13}C$ COSY NMR experiments (Table 1). ¹H-¹³C long-range correlations were observed in the heteronuclear long-range COSY spectra between H-1" (δ 5.38) and C-3 (δ 136.8) and between H-1^{'''} (δ 5.53) and C-7 (δ 162.8) and allowed to link the two rhamnopyranosyl units to the aglycon oxygen atoms at the 3- and 7-positions, respectively. The signal at δ 4.98 ppm having two large coupling constants (J = 9.0 and 9.0 Hz) was assigned to H-4"" of 7-O-rhamnopyranoside and was deshielded by the geminal acetoxyl group.

Five additional signals observed at δ 77.6, 75.0, 71.6, 68.8, and 107.4 indicated the presence of a third carbohydrate which was identified as a xylopyranosyl group by analysis of ¹H⁻¹H coupling constants of the peracetate derivative. The large coupling constant (7.5 Hz) observed for the anomeric H-1 $^{\prime\prime\prime}$ (δ 4.23) indicated a β -configuration (Table 1). The long-range correlations observed between H-1^{'''} (δ 4.23) and C-2^{''} (δ 82.4) allowed us to link the β -xylopyranosyl moiety to the 2"position of the 3-O-rhamnopyranosyl unit. This substitution pattern agreed with the deshielding effect observed for C-2" signal (+11 ppm) as compared to the signal for C-2 of an unsubstituted 3-O-rhamnosyl.

These results led us to establish for the flavonoid 1 the structure of kaempferol 3-O- β -xylopyranosyl-(1 \rightarrow 2)- α -rhamnopyranoside-7-*O*-(4''''-*O*-acetyl- α -rhamnopyranoside). The fragmentations observed in the mass spectrum agreed with this structure: the loss of a xylopyranosyl unit led to the ion m/z 621 and was followed by loss of either the rhamnopyranosyl unit at C-3 to give the ion m/z 475 or the acetylrhamnopyranosyl unit at C-7 to give the ion m/z 433. Then, both ions lost the remaining sugar unit to form the protonated aglycon ion at m/z 287.

Flavonoid **2** was identified by ${}^{1}H-{}^{1}H$ and ${}^{1}H-{}^{13}C$ COSY experiments as kaempferol $3-O-\beta$ -xylopyranosyl- $(1\rightarrow 2)$ - α -rhamnopyranoside 7-O- α -rhamnopyranoside, also known as sagittatin A, for which a complete ¹H and ¹³C assignment was obtained (Table 1). This compound was previously isolated from Epimedium sagittatum (Berberidaceae).¹¹ The comparison of the ¹H and ¹³C NMR data of 1 with those of sagittatin A (2) afforded further confirmation of the structure (Table 1). Chemical shifts were almost similar, and the acetylation of the hydroxyl group at C-4"" resulted in a lower field shift of H-4 ($\Delta \delta$ 1.48 ppm).

[†] Current address: Nucleo de Pesquisas de Produtos Naturais, UFRJ, 21941 Rio de Janeiro, Brazil. [®] Abstract published in Advance ACS Abstracts, March 1, 1996.

Table 1. ¹H NMR Data for 4""-Acetylsagittatin A (1) and Sagittatin A (2) (CD₃OD, 300 MHz)

		-				2			
	$\delta_{\rm C}$	$\delta_{ m H}$	m	J (Hz)	$\delta_{\rm C}$	$\delta_{ m H}$	m	J (Hz)	
kaempferol									
2	159.2				162.2				
3	136.8				136.8				
4	179.3				179.6				
5	162.5				162.8				
6	100.4	6.30	d	2.1	99.7	6.39	d	2.1	
7	162.8				163.3				
8	95.4	6.56	d	2.1	95.5	6.65	d	2.1	
9	157.5				157.8				
10	107.3				107.4				
1′	122.0				121.8				
2'	131.8	7.69	d	8.8	131.9	7.73	d	8.8	
3′	116.5	6.87	d	8.8	116.7	6.92	d	8.8	
4'	161.4				159.6				
5'	116.5	6.87	d	8.8	116.4	6.92	d	8.8	
6'	131.8	7.69	d	8.8	131.9	7.73	d	8.8	
3- <i>O</i> -rhamnosyl									
1″	102.8	5.38	br s		103.0	5.43	br s		
2″	82.4	4.17	br d	3.0	82.6	4.23	br d	3.3	
3″	71.7	3.80	dd	3.0; 9.0	72.0	3.86	dd	3.3; 9.5	
4‴	73.4	3.28	dd	9.0; 9.0	73.5	3.27	dd	9.5; 9.5	
5″	70.8	3.38	dq	9.0; 6.5	71.8	3.65	dq	9.5; 6.1	
6″	17.6	0.90	d	6.5	17.7	1.01	d	6.1	
3- <i>O</i> -xylosyl									
1‴′′	107.4	4.23	d	7.5	107.6	4.32	d	7.5	
2‴	75.0	3.18	dd	7.5; 9.0	75.0	3.21	dd	7.5; 9.0	
3‴	77.6	3.57	dd	9.0; 9.0	77.7	3.35	dd	9.0; 9.0	
4‴	71.6	3.30	ddd	9.0; 9.0; 3.0	70.9	3.39	ddd	9.0; 9.0; 3.0	
5‴	68.8	3.05	dd	9.0; 9.0	67.0	3.10	dd	9.0; 9.0	
5‴		3.65	dd	9.0; 3.0		3.61	dd	9.0; 3.0	
7- <i>0</i> -rhamnosyl									
1‴‴	99.4	5.53	br s		99.7	5.56	br s		
2''''	71.4	4.02	dd	3.0; 3.0	71.6	4.05	br d	3.3	
3''''	69.8	3.95	dd	3.0; 9.0	72.0	3.86	dd	3.3; 9.4	
4''''	74.9	4.98	dd	9.0; 9.0	73.5	3.50	dd	9.4; 9.4	
5''''	66.9	3.63	dq	9.0; 6.5	71.2	3.57	dq	9.4; 6.0	
6''''	17.8	1.09	d	6.5	18.1	1.27	d	6.0	
4''''-OCO <i>Me</i>	21.4	2.11	S						
4‴″-O <i>CO</i> Me	172.5								

Experimental Section

General Experimental Procedures. Column chromatography was carried out on silanized silica 60 gel (RP2) (70-230 mesh) Merck, on Lichroprep RP8 (40-63) Merck, and on Sephadex LH-20 (Pharmacia) using a H₂O/MeOH gradient. Elutions were checked by TLC (silica 60 F₂₅₄, Merck) using BuOH/AcOH/H₂O 8/1/1, as solvent system. TLC was visualized under UV (254 nm) and by spraying an ethanolic vanillin/sulfuric acid solution followed by heating. The $[\alpha]_D$ value was measured on a Perkin-Elmer 141 polarimeter, and IR spectra were registered on a Nicolet Impact 400 D spectrometer. NMR spectra were recorded on a Bruker AC 300 spectrometer (¹H, 300 MHz; ¹³C, 75 MHz; CD₃-OD or CDCl₃), with CHD₂OD (δ 3.313) and CHCl₃ (δ 7.24) signals as internal reference. Long-range ${}^{1}H{}^{-13}C$ COSY NMR spectra were obtained with J = 7 Hz. Positive FAB mass spectra were obtained on a ZAB-HF mass spectrometer.

Plant Material. *K. streptantha* Baker was cultivated in the tropical housegarden of the Arboretum National de Chèvreloup, Muséum National d'Histoire Naturelle, France and collected in spring 1994. A voucher specimen (*Allorge* 716, C-L 2448) is on deposit in the herbarium of the Muséum National d'Histoire Naturelle, Paris.

Extraction and Isolation. Fresh leaves (1.73 kg) were homogenized and extracted with MeOH exhaus-

tively. The extract was concentrated to dryness under reduced pressure to afford a brownish material (47 g) which was dissolved in distilled water (80 mL) and chromatographed on a RP-2 column. Elution with a H₂O/MeOH gradient, starting with pure water, gave 18 fractions. The flavonoid-enriched fraction (3.93 g) was further purified on a Sephadex LH-20 column eluted with a H₂O/MeOH gradient, from 7/3 to pure MeOH, to yield three fractions (I–III). Fraction I (0.67 g) was rechromatographed on a RP-8 column eluted with a mixture of H₂O/MeOH 6/4 to afford sagittatin A (2) (70 mg). Fraction II (0.87 g) yielded crude 4""-acetylsagittatin A (1) which was further purified on LH-20 Sephadex column to give pure (1) (0.83 g).

4^{''''}-**Acetylsagittatin A [Kaempferol 3**-*O*-β-xylopyranosyl-(1→2)-α-rhamnopyranoside 7-*O*-(4^{'''}-*O*acetyl-α-rhamnopyranoside)] (1): $C_{34}H_{40}O_{19}$; $[α]^{21}_D$ -148° (c = 2.5, MeOH); IR (KBr) ν cm⁻¹ 3434, 2926, 1735, 1659, 1598, 1450, 1376, 1254, 1214, 959, 833; UV (MeOH), λ_{max} , nm (log ϵ) 356 (4.15), 345 (4.21), 345 (4.09), 301 (4.09), 265 (4.37); positive FAB MS m/z (rel int) 753, 711 ([M + H]⁺) (2), 621 (4), 517 (20), 475 (41), 433 (5), 382 (3), 360 (6), 327 (9), 287 (100), 286 (52), 271 (18), 252 (74), 221 (31), 197 (12), 140 (35); HRFABMS [M + H]⁺ 753.2244 (calcd for $C_{34}H_{41}O_{19}$ 753.2242).

Acetylation of 1 by Ac₂O/Pyr and usual treatment yielded sagittatin A decaacetate: ¹H NMR (CDCl₃) δ 7.08 (1H, H-6), 6.75 (1H, H-8), 7.85 (2H, H-2',

9

H-6'), 7.21 (2H, H-3', H-5'), 5.53 (1H, H-1"", br s), 5.38 (1H, H-2''', dd, J = 2, 3.5 Hz), 5.42 (1H, H-3''', dd, J =3, 10 Hz), 5.13 (1H, H-4"", dd, J = 10, 10 Hz), 3.89 (1H, H-5"", dq, J = 10, 6.5 Hz), 1.22 (3H, H-6"", d, J = 6.5Hz), 5.41(1H, H-1", s br), 4.37 (1H, H-2", dd, J = 2, 3 Hz), 5.18 (1H, H-3", dd, J = 3, 10 Hz), 4.84 (1H, H-4", dd, J = 10, 10 Hz), 3.43 (1H, H- 5", dq, J = 10, 6.5 Hz), 0.87 (3H, H-6", d, J = 6.5 Hz), 4.56 (1H, H-1"", d, J =6.5 Hz), 4.88 (1H, H-2^{'''}, dd), 5.10 (1H, H-3^{'''}, dd, J = 9, 9 Hz), 4.85 (1H, H-4""), 3.31 (1H, H-5"", dd, J = 12, 8 Hz), 4.04 (1H, H-5^{"''}, dd, J = 12, 5 Hz), 2.39 (3H, -OAc), 2.28 (3H, -OAc), 2.16 (3H, -OAc), 2.06 (3H, -OAc), 2.03 (6H, $2 \times -OAc$), 2.01 (6H, $2 \times -OAc$), 2.00 (3H, -OAc) and 1.94 (3H, -OAc).

Sagittatin A (2): ¹H and ¹³C NMR (CD₃OD) (Table 1).

Acknowledgment. We gratefully acknowledge Mrs. L. Allorge-Boiteau for plant identification, Mr. J. Touche let for collecting plant material, and the "Centre d'Analyses du CNRS, Lyon" for the FABMS.

References and Notes

- (1) Boiteau, P.; Allorge-Boiteau, L. "Kalanchoe (Crassulaceae) de Madagascar; Karthala: Paris, 1995.
- Wagner, H.; Lotter, H.; Fischer, M. Helv. Chim. Acta 1986, 69, (2)359 (1986).
- Yamagishi, T.; Haruna, M.; Yan, X. Z.; Chang, J. J.; Lee, K. H. (3) J. Nat. Prod. 1989, 52, 1071.
- Gaind, K. N.; Singla, A. K.; Wallace, J. W. Phytochemistry, 1981, (4) 20, 530.
- (5) Liu, K. C. S.; Yang, S. L.; Roberts, M. F.; Phillipson, J. D. J. Nat. Prod., **1989**, 52, 970.
 (6) Liu, K. C. S.; Lin, Y. S.; Roberts, M. F.; Phillipson, J. D. Phytochemistry **1989**, 28, 2813.
- (7) Siddiqui, S.; Faizi, S.; Siddiqui, B. S.; Sultana, N. Phytochemistry, **1989**, *28*, 2433. (8)
- Costa, S. S.; Jossang, A.; Souza, M. L. M.; Moraes, V. L. G.; Bodo, B. *J. Nat. Prod.*, **1994**, *57*, 1503. (9)
- Lucas, V.; Machado, O. Rev. Flora Med. 1946, 77.
- (10) Morton, J. F. J. Ethnopharmacol. 1990, 29, 245. (11) Oshima, Y.; Okamoto, M.; Hikino, H. Planta Med. 1989, 55, 309.

NP960203U